Reactions of the inner surface of carbon nanotubes and nanoprotrusion

نویسندگان

  • Thomas W. Chamberlain
  • Jannik C. Meyer
  • Johannes Biskupek
  • Jens Leschner
  • Adriano Santana
  • Nicholas A. Besley
چکیده

Although the outer surface of single-walled carbon nanotubes (atomically thin cylinders of carbon) can be involved in a wide range of chemical reactions, it is generally thought that the interior surface of nanotubes is unreactive. In this study, we show that in the presence of catalytically active atoms of rhenium inserted into nanotubes, the nanotube sidewall can be engaged in chemical reactions from the inside. Aberration-corrected high-resolution transmission electron microscopy operated at 80 keV allows visualization of the formation of nanometre-sized hollow protrusions on the nanotube sidewall at the atomic level in real time at ambient temperature. Our direct observations and theoretical modelling demonstrate that the nanoprotrusions are formed in three stages: (i) metal-assisted deformation and rupture of the nanotube sidewall, (ii) the fast formation of a metastable asymmetric nanoprotrusion with an open edge and (iii) a slow symmetrization process that leads to a stable closed nanoprotrusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale.

Although the outer surface of single-walled carbon nanotubes (atomically thin cylinders of carbon) can be involved in a wide range of chemical reactions, it is generally thought that the interior surface of nanotubes is unreactive. In this study, we show that in the presence of catalytically active atoms of rhenium inserted into nanotubes, the nanotube sidewall can be engaged in chemical reacti...

متن کامل

Effects of Confinement in Carbon Nanotubes on the Performance and Lifetime of Fischer-Tropsch Iron Nano Catalysts

The effects of confinement in carbon nanotubes on Fischer-Tropsch (FT) activity, selectivity and lifetime of Carbon NanoTubes (CNTs) supported iron catalysts are reported. A method was developed to control the position of the catalytic sites on either inner or outer surface of carbon nanotubes. TEM analyses revealed that more than 80% of iron oxide particles can be controlled to be position...

متن کامل

A Comparison between β-Cyclodextrin and Chitosan as Soft Organic Materials for Surface Modification of MWCNTs

In this paper, synthesized (raw) multi-walled carbon nanotube (rMWCNTs) surfaces were modified with chitosan and β-cyclodextrin using Chen’s soft cutting technique. Raw and surface modified multi-walled carbon nanotubes were observed by transmission electron microscope (TEM). The results showed that chitosan and β-cyclodextrin could attach to the outer surface of nanotubes, wrapping the nanotub...

متن کامل

Multi-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electro oxidation in alkaline media

Palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNTs) have been synthesized using a modified polyol reduction method and its performance in methanol oxidation reactions has evaluated. The morphology of palladium on MWCNTs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic performance of synthesized catalyst ...

متن کامل

Doping finite-length carbon and boron nitride nanotubes with aluminium atom: A thermodynamic semiempirical investigation

The doping reaction of truncated boron nitride and carbon nanotubes with aluminium atom wastheoretically investigated. The AM1, PM3, and PM6 semiempirical methods have been used toevaluate the thermochemistry of doping reactions of single walled boron nitride nanotubes andcarbon nanotubes. The enthalpy changes, Gibbs free energy changes, and entropy changes of studieddoping reactions were evalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011